Nmt笔记

2018年09月20日

参数
length_penalty_weight 0.0
log_device_placement False
max_gradient_norm 5.0
max_train 0
metrics [‘bleu’]
num_buckets 5
num_dec_emb_partitions 0
num_decoder_layers 2
num_decoder_residual_layers 0
num_embeddings_partitions 0
num_enc_emb_partitions 0
num_encoder_layers 2
num_encoder_residual_layers 0
num_gpus 1
num_inter_threads 0
num_intra_threads 0
num_keep_ckpts 5
num_sampled_softmax 0
num_train_steps 12000
num_translations_per_input 1
num_units 128
optimizer sgd
out_dir /tmp/nmt_model
output_attention True
override_loaded_hparams False
pass_hidden_state True
random_seed None
residual False
sampling_temperature 0.0
share_vocab False
sos
src vi
src_embed_file None
src_max_len 50
src_max_len_infer None
src_vocab_file /tmp/nmt_data/vocab.vi
src_vocab_size 7709
steps_per_external_eval None
steps_per_stats 100
subword_option None
test_prefix /tmp/nmt_data/tst2013
tgt en
tgt_embed_file None
tgt_max_len 50
tgt_max_len_infer None
tgt_vocab_file /tmp/nmt_data/vocab.en
tgt_vocab_size 17191
time_major True
train_prefix /tmp/nmt_data/train
unit_type lstm
use_char_encode False
vocab_prefix /tmp/nmt_data/vocab
warmup_scheme t2t
warmup_steps 0


-_-below can discuss!-_-